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Abstract— We investigate the problem of a monostatic pulse-
Doppler radar transceiver trying to detect targets, sparsely
populated in the radar’s unambiguous time-frequency region.
Several past works employ compressed sensing (CS) algorithms
to this type of problem, but either do not address sample rate
reduction, impose constraints on the radar transmitter, propose
CS recovery methods with prohibitive dictionary size, or perform
poorly in noisy conditions. Here we describe a sub-Nyquist
sampling and recovery approach called Doppler focusing which
performs low rate sampling and digital processing, imposes no
restrictions on the transmitter, and uses a CS dictionary with size
which does not increase with number of pulses P . Furthermore,
in the presence of noise, Doppler focusing enjoys a signal-to-
noise ratio (SNR) improvement which scales linearly with P ,
obtaining good detection performance even at SNR as low as -
25dB. It can easily incorporate clutter rejection capabilities, and
handle targets with large dynamic range. The recovery is based
on the Xampling framework, which allows sub-Nyquist analog-
to-digital conversion. The entire digital recovery process is also
performed at the low rate. Finally, our approach is implemented
in hardware using a Xampling radar prototype.

I. INTRODUCTION

We consider target detection and parameter estimation in a

pulse-Doppler radar system, using sub-Nyquist sampling. The

radar is a single transceiver, monostatic, narrow-band system.

Targets are non-fluctuating point targets, sparsely populated in

the radar’s unambiguous time-frequency region. We propose

a recovery method which can detect and estimate targets’

time delay and Doppler frequency, using a linear, non-adaptive

sampling technique at a rate significantly lower than the radar

signal’s Nyquist frequency.

Current state-of-the-art radar systems sample at the signal’s

Nyquist rate, which can be hundreds of MHz and even up to

several GHz. Systems exploiting sub-Nyquist sampling benefit

from a lower rate analog-to-digital conversion (ADC), which

requires less power consumption, heat dissipation, and cost.

Our goal is to present some steps in order to break the link

between radar signal bandwidth and sampling rate. The sub-

Nyquist Xampling [1], [2] method we use for this purpose

is an ADC which performs analog prefiltering of the signal

before taking point-wise samples. These compressed samples

(“Xamples”) contain the information needed to recover the

signal parameters using compressed sensing (CS) algorithms.

Past works employ CS algorithms to this type of problem,

but do not address sample rate reduction and continue sam-

pling at the Nyquist rate [3]. Other works combine radar and

CS in order to reduce the receiver’s sampling rate, but in doing

so impose constraints on the radar transmitter and do not treat

noise [4], or do not handle noise well [5]. The work in [5] first

estimates target delays and then uses these recovered delays

to estimate Doppler frequencies and amplitudes. Another line

of work proposes single stage CS recovery methods with dic-

tionary size proportional to the product of delay and Doppler

grid sizes, making them infeasible for many realistic scenarios

[3], [6].

At the crux of our proposed recovery method is a coher-

ent superposition of time shifted and modulated pulses, the

Doppler focusing function Φ(t; ν). For any Doppler frequency

ν, this function combines the received signals from different

pulses so targets with appropriate Doppler frequencies come

together in phase. For each sought after ν, Φ(t; ν) is processed

as a simple one-dimensional CS problem and the appropriate

time delays are recovered. The gain from this method is both

in terms of SNR and Doppler resolution, and it can be carried

out on the low rate samples, as will be shown in Section III.

Using our approach we acquire the sub-Nyquist samples and

then digitally recover the unknown target parameters using low

rate processing, without returning to the higher Nyquist rate.

Our Doppler focusing based method separates the Doppler

from delay recovery, as opposed to many CS delay-Doppler

estimation methods which depend upon constructing a CS

dictionary with a column for each delay-Doppler hypothesis,

and suffering from a dictionary explosion problem. The SNR

achieved using Doppler focusing scales linearly with the num-

ber of received pulses P , as does an optimal MF, providing

good performance in SNR as low as -25dB, as will be shown

in Section IV. Regarding clutter, Doppler focusing includes

inherent isolation between targets with different Doppler fre-

quencies, so unless target and clutter have very similar Doppler

frequency, target detection is unhindered.

II. RADAR MODEL

We consider a radar transceiver that transmits a pulse train

xT (t) =
P−1∑
p=0

h(t− pτ), 0 ≤ t ≤ Pτ (1)

consisting of P equally spaced pulses h(t). The pulse-to-pulse

delay τ is referred to as the PRI, and its reciprocal 1/τ is

the PRF. The entire span of the signal in (1) is called the

coherent processing interval (CPI). The pulse h(t) is a known

time-limited baseband function with continuous-time Fourier

transform (CTFT) H(ω) =
∫∞
−∞ h(t)e−jωtdt. We assume that

H(ω) has negligible energy at frequencies beyond Bh/2 and

we refer to Bh as the bandwidth of h(t). The target scene

is composed of L non-fluctuating point targets (Swerling-0



model, see [7]), where we assume that L is known, although

this assumption can easily be relaxed. The pulses reflect off the

L targets and propagate back to the transceiver. Each target �
is defined by three parameters: a time delay τ�, proportional to

the target’s distance from the radar; a Doppler radial frequency

ν�, proportional to the target-radar closing velocity; and a

complex amplitude α�, proportional to the target’s radar cross

section (RCS) and all other propagation factors.

Assuming the signal is narrowband, we can write the

received signal as

x(t) =
P−1∑
p=0

L−1∑
�=0

α�h(t− τ� − pτ)e−jν�pτ . (2)

It will be convenient to express the signal as a sum of single

frames x(t) =
∑P−1

p=0 xp(t), where

xp(t) =
L−1∑
�=0

α�h(t− τ� − pτ)e−jν�pτ . (3)

Our goal in this work is to accurately detect the L targets,

i.e. to estimate the 3L DOF {α�, τ�, ν�}L−1
�=0 in (2), using the

least possible number of digital samples.

III. DELAY-DOPPLER RECOVERY

We begin by describing how Xampling can be performed on

the multi pulse signal (2). We then describe Doppler focusing

based recovery using these Xamples, and analyze two aspects

of the algorithm: the effect of multiple pulses on SNR when

noise exists, and the minimal number of samples required

for perfect recovery without noise. Finally we discuss some

practical considerations and clutter.

A. Xampling

Since xp(t) is confined to the interval t ∈ [pτ, (p+ 1)τ ], it

can be expressed by its Fourier series

xp(t) =
∑
k∈Z

cp[k]e
j2πkt/τ , t ∈ [pτ, (p+ 1)τ ], (4)

where

cp[k] =
1

τ

∫ (p+1)τ

pτ

xp(t)e
−j2πkt/τdt

=
1

τ

L−1∑
�=0

α�e
−jν�pτ

∫ (p+1)τ

pτ

h(t− τ� − pτ)e−j2πkt/τdt

=
1

τ
H(2πk/τ)

L−1∑
�=0

α�e
−jν�pτe−j2πkτ�/τ . (5)

Past works [2], [8], [9] have shown how these Fourier coeffi-

cients can be obtained from the time domain signal x(t). From

(5) we see that all 3L unknown parameters {α�, τ�, ν�}L−1
�=0

are embodied in the Fourier coefficients cp[k] in the form of a

complex sinusoid problem. The number of Fourier coefficients

sampled in each pulse, |κ|, controls the trade-off between

sample rate and robustness to noise.

B. Applying Doppler Focusing and CS Recovery

Having acquired cp[k] using Xampling, we now create a

weighted sum of Fourier coefficients, i.e. perform the Doppler

focusing operation for a specific frequency ν:

Ψν [k] =
P−1∑
p=0

cp[k]e
jνpτ

=
1

τ
H(2πk/τ)

L−1∑
�=0

α�e
−j2πkτ�/τ

P−1∑
p=0

ej(ν−ν�)pτ . (6)

We now analyze the sum of exponents in (6). For any given

ν, targets with Doppler frequency ν� in a band of width 2π/Pτ
around ν, i.e. in Ψν [k]

′s “focus zone”, will achieve coherent

integration and an SNR boost of approximately

g(ν|ν�) =
P−1∑
p=0

ej(ν−ν�)pτ
|ν−ν�|<π/Pτ∼= P (7)

compared with a single pulse. On the other hand, since the

sum of P equally spaced points covering the unit circle is

generally close to zero, targets with ν� not “in focus” will

approximately cancel out. Thus g(ν|ν�) ∼= 0 for |ν − ν�| >
π/Pτ . Therefore, Doppler focusing performed on the low rate

sub-Nyquist samples obtains:

Ψν [k] ∼= P

τ
H(2πk/τ)

∑
{�:|ν−ν�|<π/Pτ}

α�e
−j2πkτ�/τ . (8)

To analyze the effect of Doppler focusing on SNR, we add

noise to (2):

x̃(t) = x(t) + w(t), (9)

where w(t) is a zero mean wide-sense stationary random

signal with autocorrelation rw(s) = σ2δ(s). The Fourier

coefficients in (4) then become c̃p[k] = cp[k] + wp[k], where

wp[k] is a zero mean complex random variable with variance

σ2/τ . It can be shown [10] that the SNR in the coefficients

after focusing is P times greater than before Doppler focusing.

Thus, we have obtained a linear SNR improvement with P ,

as does an optimal MF.

For each ν we now have a delay estimation problem, which

can be written as

Ψν =
P

τ
HVxν (10)

where H is a |κ| × |κ| diagonal matrix with elements

H(2πki/τ) and V is a |κ| × Nτ Vandermonde matrix with

Vmq = e−j2πkmn/Nτ . Assuming target delays are integer

multiples of τ/Nτ , xν is L-sparse and

Ψν = [Ψν [k0] ... Ψν [k|κ|−1]]
T ∈ C

|κ|. (11)

Note that (10) forms a CS problem, which can be solved with

standard CS methods.

The Doppler focusing operation (6) is a continuous op-

eration on the variable ν, and can be performed for any

Doppler frequency up to the PRF. With Doppler focusing

there are no inherent “blind speeds”, i.e. target velocities



which are undetectable, as occurs with classic Moving Tar-

get Indication (MTI) [11]. Define the set of Fourier coef-

ficients C = {cp[k]}k∈κ
0≤p<P , and Ψν(C) as the vector of

focused coefficients (11) obtained from C using (6). Therefore

xν(C), can be recovered from Ψν(C) for any ν. Since

strong amplitudes are indicative of true target existence as

opposed to noise, Doppler focusing recovery searches for

large values of |xν(C)[n]| and estimates target delays and

Doppler frequencies as nΔτ and ν accordingly. After detecting

each target, its influence is removed from the set of Fourier

coefficients in order to reduce masking of weaker targets and

to remove spurious targets created by processing sidelobes. A

similar subtraction is performed in many iterative algorithms

such as Orthogonal Matching Pursuit. Detection is performed

iteratively until all targets have been detected, if L is known,

or until an amplitude threshold is met, if the model order is

unknown.

C. Noiseless Recovery
The following theorems analyze the minimal number of

samples required for perfect recovery when there is no noise.

Proofs are given in [10].

Theorem 1 The minimal number of samples required for
perfect recovery of L targets when there is no noise, is at
least 4L2, with |κ| and P at least 2L each.

This result coincides with the minimal sampling rate for two

dimensional spectral analysis [12].

Theorem 2 Suppose target Doppler frequencies are aligned
to a grid {ν̃m = 2πm/τM}M/2−1

m=−M/2, with no restriction on
target delays. Then the minimal number of samples required
for perfect recovery of L targets when there is no noise, is
2Lmin(M, 2L).

Theorem 3 Under the conditions of Theorem 2, the minimal
number of samples required for perfect recovery of L targets
using Doppler focusing is 2LM , with |κ| ≥ 2L and P ≥ M .

The minimal rate requirement exists separately on the

number of sampled Fourier coefficients |κ| and the number of

sampled pulses P , and not for their product. This shows that

in terms of minimal sampling rate, samples in the coefficient

dimension k cannot be replaced by samples in the pulse

dimension p, and vice versa.
These theorems show that the requirement of Doppler

focusing for |κ| ≥ 2L matches the general lower bound on

the number of samples required in each pulse. Furthermore,

when M = O(L), the number of pulses required for Doppler

focusing is within order of magnitude of the lower bound.

D. Practical Considerations and Clutter
If one wishes to probe a uniform grid of M Doppler

frequencies, i.e. {ν̃m = 2πm/τM}M/2−1
m=−M/2, then Ψν [k] can

be created efficiently using a length M DFT:

Ψν̃m [k] =

P−1∑
p=0

cp[k]e
j2πmp/M = DFTM{cp[k]}.

Another practical concern is target dynamic range. Since

target amplitudes can differ by several orders of magnitude,

care must be taken so strong targets do not mask weaker

ones. When focusing on some Doppler frequency ν, targets

with Doppler frequencies ν� satisfying |ν� − ν| > π/Pτ are

undesirable. These targets can be viewed as “out-of-focus”. We

can add to (6) a user defined window function w[p] (e.g. Hann,

Blackman, etc.) which is designed to mitigate the impact of

these out-of-focus targets:

Ψν [k] =
P−1∑
p=0

cp[k]e
jνpτw[p]

=
1

τ
H(2πk/τ)

L−1∑
�=0

α�e
−j2πkτ�/τ

P−1∑
p=0

ej(ν−ν�)pτw[p]. (12)

In Fig. 1 we see an example of how windowing can reduce

the effect of out-of-focus targets compared with no windowing

(constant w[p]).

Fig. 1: DFT of windowing functions w[p] compared with no

windowing (constant w[p]) for P = 100 pulses.

Finally, we show that Doppler focusing possesses inherent

clutter rejection capabilities, suggesting that special prefilter-

ing operations such as MTI may not be required. The most

common method to allow detection in clutter ridden scenarios,

is to utilize the fact that clutter, as opposed to most targets,

is mostly static. If we assume the radar transceiver itself

is also stationary, then clutter echoes will be received with

zero Doppler frequency. This is the reason that classic anti-

clutter methods (e.g. MTI) are basically a notch filter blocking

the Doppler frequency generated by the radar’s own motion.

Doppler focusing includes inherent target-clutter Doppler sep-

aration, so it does not require any prefiltering in order to allow

target detection when facing clutter.

The Doppler focusing operation (6) can be viewed as

passing the Xamples cp[k] through a bandpass filter bank,

where each filter has a pass-band of width 2π/Pτ . The

filters’ attenuation can be controlled using windowing (12),

at the cost of increasing the pass-band width. This creates

adjustable isolation between delay estimation problems (10)

for targets with Doppler frequencies separated by more than

the pass-band width. Therefore, if clutter were to be primarily



concentrated around some specific frequency, targets with

Doppler frequencies shifted away by more than approximately

2π/Pτ could be detected without interference.

IV. SIMULATION RESULTS AND RADAR EXPERIMENT

We now present some numerical experiments illustrating the

recovery performance of a sparse target scene. We corrupt the

received signal x(t) with an additive white Gaussian noise n(t)
with power spectral density Sn(f) = N0/2, bandlimited to

x(t)’s bandwidth Bh. We define the signal to noise power ratio

for target � as SNR� = 1
Tp

∫ Tp

0
|α�h(t)|2dt/N0Bh, where Tp

is the pulse time. The scenario parameters used were number

of targets L=5, number of pulses P=100, PRI τ=10μsec,

and Bh=200MHz. Target delays and Doppler frequencies are

spread uniformly at random in the appropriate unambiguous

regions, and target amplitudes were chosen with constant ab-

solute value and random phase. The classic time and frequency

resolutions (“Nyquist bins”), defined as 1/Bh and 1/Pτ , are

5nsec and 1 KHz accordingly.

In order to demonstrate a 1:10 sampling rate reduction, our

sub-Nyquist Xampling scheme generated 200 Fourier coeffi-

cients per pulse, as opposed to the 2000 Nyquist rate samples.

We compared Doppler focusing with classic processing and a

two-stage recovery method as described in [5] using a “hit-

rate” criterion: we define a “hit” as a delay-Doppler estimate

which is circumscribed by an ellipse around the true target

position in the time-frequency plane.

Fig. 2: Hit Rate for classic processing, two-stage CS recovery

and Doppler focusing. Sub-Nyquist sampling rate was one

tenth the Nyquist rate.

Fig. 2 demonstrates the hit-rate performance of the dif-

ferent recovery methods. It is evident that Doppler focusing

is superior to the other sub-Nyquist recovery techniques.

Other simulations in [10] show that the delay and Doppler

estimations errors using Doppler focusing are very close to the

Nyquist rate errors, that Doppler focusing is able to distinguish

between closely spaced targets, and that Doppler focusing’s

performance improves when the transmitted waveform’s en-

ergy is concentrated in the sampled frequencies.

We now present a real experiment of our radar receiver

hardware prototype. Our setup includes a custom made sub-

Nyquist radar receiver board (see Fig. 3) which implements

sub-Nyquist Xampling and digital recovery using Doppler

focusing, while AWR software is used to simulate the reflec-

tions from several targets. The analog input signal (2) was

synthesised using National Instruments (NI) hardware. This

signal is sampled as described in [2], and target parameters

are successfully estimated digitally using Doppler focusing.

Fig. 3: The 4-channel radar receiver board on top of the NI

chassis, and a PC with the LabView demo screen.

To evaluate the board we make use of NI PXI equipment

for both system synchronization and signal sources. The entire

component ensemble, wrapped in the NI chassis, is depicted in

Fig. 3. The RF front end and board we use are identical to the

ones used in [2], but the digital recovery method accounting

for target Doppler frequencies is different.

This experimental prototype proves that the sub-Nyquist

methodology described in this paper is actually feasible in

practice. The recovery method proposed here not only de-

scribes digital recovery, but also addresses the problem of

sampling the analog signal at a low rate, in a way which is

feasible with standard RF hardware.
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